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Analysis and Design of a 45 Slant-Polarized
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Abstract—A 45 slant-polarized omnidirectional antenna is
proposed for mobile communication base stations. The proposed
antenna consists of four printed crossed-dipole elements which
are rolled up into a cylinder for omnidirectional radiation.
Each crossed-dipole element is composed of a horizontal dipole
and a vertical dipole. The 45 slant polarization is achieved by
adjusting the lengths of the horizontal and vertical dipoles. A
broadband feeding network consisting of four broadband baluns
and an impedance matching circuit is introduced to feed the
four crossed-dipole elements. Experimental results show that the
omnidirectionality or gain variation in the horizontal plane is
less than 1 dB while the cross-polarization level is below dB
over a bandwidth of 15% (1.9–2.2 GHz). The 45 slant-polarized
omnidirectional antenna has a bandwidth of 22% (1.75–2.18 GHz)
for 15-dB return loss. Theoretical analysis and design procedure
are presented.

Index Terms—45 slant polarization, base station antenna, mo-
bile communications, omnidirectional antenna.

I. INTRODUCTION

I N a mobile communication system, base station antennas
with slant polarization are commonly used because

this type of polarization scheme offers more symmetrical propa-
gation characteristics than vertical/horizontal polarization does
[1]. A number of antennas have been proposed for 45 slant-
polarized antenna [2]–[5]. However, all of these 45 slant-po-
larized antennas have a unidirectional radiation pattern which
covers a sector (e.g., 120 ) of azimuthal plane in a cellular
system. For 360 coverage, antennas with an omnidirectional
radiation pattern are required. It is well known that a verti-
cally polarized omnidirectional antenna can be realized by a
vertical dipole [6], while a horizontally polarized omnidirec-
tional antenna may be obtained by a horizontal loop [7], [8]. A
vertical/horizontal dual-polarized omnidirectional slot antenna
was proposed in [9], but it is not 45 slant-polarized. For a
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45 slant-polarized omnidirectional antenna, it is necessary to
have an omnidirectional radiation pattern with equal horizontal
and vertical components, including the same magnitude and the
same phase. To the best of our knowledge, there are very few
publications reporting 45 slant-polarized omnidirectional an-
tennas. In [10], a bifilar helix antenna was claimed to be a 45
slant-polarized omnidirectional antenna. Unfortunately, it has
been verified that this antenna is actually a circularly polarized
omnidirectional antenna [11].
In this paper, a real 45 slant-polarized omnidirectional an-

tenna is proposed. This antenna consists of four crossed-dipole
elements which are wrapped around a cylinder for an omnidirec-
tional radiation pattern. Each crossed-dipole element includes a
horizontal dipole and a vertical dipole. The 45 slant polariza-
tion is realized by adjusting the lengths of the horizontal and ver-
tical dipoles. A feeding network composed of four broadband
baluns and an impedance matching circuit is designed to ex-
cite the 45 slant-polarized omnidirectional antenna, achieving
a bandwidth of 22% (1.75–2.18 GHz) for 15-dB return loss. The
cross-polarization level is below dB and gain variation (or
omnidirectionality [12]) is less than 1 dB (peak-to-peak) in the
horizontal plane over a bandwidth of 15% (1.9–2.2 GHz).
Section II describes the configuration of the 45 slant-polar-

ized omnidirectional antenna. Analysis and design are presented
in Section III. An experimental verification is demonstrated in
Section IV.

II. ANTENNA CONFIGURATION

The configuration of a 45 slant-polarized omnidirectional
antenna is depicted in Fig. 1. The antenna includes four
crossed-dipole elements and a feeding network. The four
crossed-dipole elements are first printed on a thin flexible
dielectric substrate and then rolled up into a hollow cylinder
of diameter D (see Fig. 1(a)) to achieve an omnidirectional
radiation pattern. Each crossed-dipole element is composed
of a horizontal dipole and a vertical dipole (see Fig. 1(b)),
which have lengths and , respectively. The 45 slant
polarization is achieved by adjusting the lengths and .
(Note that four 45 slanted dipoles cannot radiate an omni-
directional pattern with 45 slant polarization; instead they
may generate a circularly polarized omnidirectional pattern
[13], [14].) Four crossed-dipole elements are excited through a
feeding network that comprises four broadband baluns and an
impedance matching circuit (see Fig. 1(c)). A 50- coaxial line
is connected to the feeding network at the “Feeding point”.
The 45 slant-polarized omnidirectional antenna was de-

signed for UMTS (1.92–2.17 GHz) base stations at a center
frequency of 2.05 GHz. The design procedure will be described
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Fig. 1. Configuration of a 45 slant-polarized omnidirectional antenna: (a) Per-
spective view; (b) Crossed-dipole element; (c) Feeding network.

in the next section. The 45 slant-polarized omnidirectional
antenna was simulated using Ansoft HFSS v13. The geometric
parameters of the simulated antenna are listed in Table I.

III. ANALYSIS AND DESIGN

To understand the operating mechanism of the 45 slant-po-
larized omnidirectional antenna, we first define slant-po-
larized electric field components as follows [15]:

(1)

(2)

TABLE I
GEOMETRIC PARAMETERS FOR THE 45 SLANT-POLARIZED ANTENNA

Fig. 2. Definition of 45 slant-polarized components.

Fig. 3. Four crossed-dipole elements decomposed into four horizontal arc
dipoles plus four vertical dipoles.

where and are the and components of the far-zone
electric field, respectively, as illustrated in Fig. 2. Obviously,
it is required for a purely 45 slant polarization to meet two
conditions: 1) the magnitudes of and need to be equal,
i.e., ; 2) the phases of and can be equal,
i.e., , or have a 180 phase difference, i.e.,

. For slant polarization, and
, while for slant polarization,

and .
Four rolled crossed-dipole elements can be decomposed into

four horizontal arc dipoles plus four vertical straight dipoles,
as shown in Fig. 3. To simplify the analytical procedure, we
replace the four horizontal arc dipoles with four straight dipoles,
as illustrated in Fig. 4.
It is assumed that the current distribution on every dipole is

sinusoidal. The far-zone electric field radiated by four vertical
dipoles in the horizontal plane (i.e., ) is (see Appendix)

(3)
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Fig. 4. Simplified crossed-dipole elements and associated decomposition.

where is the amplitude of the sinusoidal current on the ver-
tical dipoles and is the wave number with

in free space at the center frequency of an oper-
ating frequency band.
Similarly, the electric field radiated by four horizontal dipoles

in the horizontal plane (i.e., ) can be found to be (also
see Appendix)

(4)

where is the amplitude of the sinusoidal current on the hori-
zontal dipoles.
There are three critical parameters for the 45 slant-polarized

omnidirectional antenna, including the diameter of the hollow
cylinder (D) and the lengths of the horizontal and vertical
dipoles ( and ), which are determined as follows.

A. Determination of Antenna Diameter (D)

According to the definition of 45 slant polarization, the first
necessary condition is , or . We
calculate using (3) and (4) for a dipole length of a
half-wavelength (i.e., ) and plot as
a function of the azimuthal angle for difference values of the
antenna diameter (D) in Fig. 5. It can be seen that when

varies around 0.6 and the variation (peak-to-
peak) is larger than 0.3. When , the variation is less
than 0.1 but is larger than 1.3. As D is close to a
half-wave length, is close to 1. The optimal value for
the antenna diameter is at which varies
around 1 and the variation is less than 0.2. Note that this optimal
value is found for the simplified crossed-dipole elements with
straight horizontal dipole.
For the original crossed-dipole elements with horizontal arc

dipoles, the antenna diameter should be slightly larger than
. By simulation, the optimized antenna diameter is found

to be close to a half-wave length, i.e., .

B. Determination of Lengths ( and )

Based on the definition of 45 slant polarization, the second
necessary condition requires the phases of and to be

Fig. 5. for different values of the antenna diameter (D).

Fig. 6. The phase of the input impedance for a printed dipole as a
function of the dipole length .

equal, i.e., , or to have a 180 difference, i.e.,
. From (3) and (4), we can see that

and would have a 90 phase difference if the current
on the horizontal dipoles is in phase with the current on the
vertical dipoles. The currents ( and ) depend on the phase

of the input impedance of each dipole, which varies
with the length of the dipole. Fig. 6 shows the phase sim-
ulated for a printed dipole with width as a func-
tion of the dipole length . It is seen that a 90 phase difference
can be obtained by changing the length approximately from

to . This means that the lengths of the hor-
izontal and vertical dipoles ( and ) can be chosen to be

and .
Considering the mutual coupling and the actual current

distributions on the crossed-dipole elements, we optimized the
lengths and by simulation. Fig. 7 shows the magnitude
ratio and phase difference as a func-
tion of for different values of . From Figs. 7(a) and (c), it
is seen that when and , it is impossible to
satisfy the conditions and
for the same . This implies that 45 slant polarization cannot
be achieved for and . From Fig. 7(b), it
can be seen that when and , both the
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Fig. 7. Magnitude ratio and phase difference as
a function of for different values of : (a) ; (b) ;
(c) .

conditions and are satis-
fied; thus slant polarization can be achieved. For
slant polarization, it is easy to be obtained by switching the
connecting points between the horizontal and vertical dipoles.
Fig. 8 demonstrates the magnitude ratio and phase
difference as a function of frequency for the
optimized lengths and . It is seen that

and over the
frequency range 1.9–2.2 GHz.

Fig. 8. Magnitude ratio and phase difference as
a function of frequency for and .

Fig. 9. Feeding network (a) and its equivalent circuit (b) for the 45 slant-
polarized omnidirectional antenna.

C. Feeding Network

A feeding network consisting of four broadband baluns and
an impedance matching circuit is introduced to feed the four
crossed-dipole elements. The input impedance of the broadband
balun for each crossed-dipole element (e.g., looking at Point
“C” in Fig. 9(a)) is designed to be 70 . The theoretical anal-
ysis of the broadband balun can be found in [16]. To match four
broadband baluns connected in parallel to a 50- coaxial line, an
impedance matching circuit is needed. An equivalent circuit for
the impedance matching is depicted in Fig. 9(b). The broadband
balun was simplified as a 70- impedance The 70- impedance
looking at Point “C” is transformed into a 200-
impedance at Point “A” by a 120- quarter-
wave transformer . Then
the four 200- impedances are connected in parallel, resulting
in a 50- impedance, matching to the 50- coaxial line at the
center of the feeding network. The simulated input impedances
from 1.7–2.2 GHz at different points of the feeding network
are shown in Fig. 10. It can be seen that the input impedance
for each crossed-dipole element is capacitive. After
impedance transformation through the slot-line coupling, the
impedance at Point “C” is approximately equal to 70
at the center frequency 2.05 GHz. Following the quarter-wave
transformer, the total input impedance of the feeding net-
work is matched to 50 .

IV. EXPERIMENTAL VERIFICATION

To verify the design, the 45 slant-polarized omnidirectional
antenna was fabricated and measured. Fig. 11 shows a picture
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Fig. 10. Simulated input impedances at different points of the feeding network.

Fig. 11. A picture of the prototype of a 45 slant-polarized omnidirectional
antenna with feeding network.

Fig. 12. Simulated and measured results for return loss of the 45 slant-polar-
ized omnidirectional antenna.

of the antenna prototype with the front and back views of
the feeding network. Four crossed-dipole elements were first
printed on a Panasonic R-F775 flexible dielectric substrate
( mm)

Fig. 13. Simulated and measured radiation patterns of the 45 slant-polarized
omnidirectional antenna at (a) 1.9 GHz, (b) 2.05 GHz, and (c) 2.2 GHz.

and then rolled up into a hollow cylinder. The feeding network
was printed on a Taconic TLY-5 dielectric substrate (

mm). A flexible
coaxial line (Johnson/Emerson RG178) with an SMA con-
nector is connected to the feeding network.
Fig. 12 shows simulated and measured results of return loss

(RL). Good agreement is observed. The measured bandwidth
for dB is about 22% (1.75 GHz–2.18 GHz). The radia-
tion patterns of the 45 slant-polarized omnidirectional antenna
simulated and measured at 1.9, 2.05, and 2.2 GHz are plotted in
Fig. 13. The radiation pattern was measured using a SATIMO
antenna measurement system SG24 at the Speed Communica-
tion Technology Corporation Ltd., Shenzhen, China. It is ob-
served that the gain variation in the horizontal plane (i.e., the
x-y plane) is less than 1 dB, confirming a good omnidirection-
ality. The cross-polarization level (i.e., the polarized com-
ponent) is dB below the co-polarization (i.e., the po-
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Fig. 14. Gain and radiation efficiency for the 45 slant-polarized omnidirec-
tional antenna.

larized component) in the horizontal plane. Fig. 14 presents the
simulated and measured gains of the 45 slant-polarized omni-
directional antenna. The measured gain is around 0 dBi, which
is lower than the gain of a typical half-wave dipole antenna. The
lower gain is mainly due to the broader beamwidth in the eleva-
tion plane, which is found to be (half-power beamwidth),
much wider than 78 for a half-wave dipole. The radiation ef-
ficiency of the 45 slant-polarized omnidirectional antenna is
about 80% (also see Fig. 14). The simulated efficiency is slightly
higher than measured result because the simulation did not take
the feeding coaxial line into account.

V. CONCLUSION

A 45 slant-polarized omnidirectional antenna is developed
by utilizing four crossed-dipole elements. The operating mech-
anism and design method are elaborated. The 45 slant-po-
larized omnidirectional antenna achieves a bandwidth of 22%
(1.75–2.18 GHz) for 15-dB return loss. The gain variation is
less than 1 dB and the cross-polarization level is below
dB over a bandwidth of 15% (1.9–2.2 GHz). This broadband
omnidirectional antenna may find applications in base stations
for mobile communications.

APPENDIX
DERIVATION OF IN (3) AND IN (4)

Consider a vertical dipole of length placed coincidently
with the z axis and with its center at the origin. Assume a si-
nusoidal current distribution on the dipole. The far-zone electric
field for the vertical dipole in the horizontal plane (i.e., )
is given by [6], [17]

(A1)

where is the amplitude of the sinusoidal current on the dipoles
and is the intrinsic impedance of the free space.
For four vertical dipoles equally spaced along a circular ring

of radius R, as shown in Fig. A1, the far-zone electric field in the

Fig. A1. Four vertical dipoles.

Fig. A2. Four horizontal dipoles.

horizontal plane for each dipole can be approximately expressed
for as

(A2)

(A3)

(A4)

(A5)

Thus, the total electric field is the sum of fields from the four
vertical dipoles as given by (3).
For four horizontal dipoles placed along a square of side

length 2R, as shown in Fig. A2, the far-zone electric field in the
horizontal plane for each dipole can be found to be

(A6)

(A7)

(A8)

(A9)
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Therefore, the sum of electric fields from the four horizontal
dipoles leads to the total electric field given by (4).
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